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0.1 Objectives 

The United Technologies Research Center (UTRC), a Division of UTC, was funded by 

AFOSR Computational Mathematics Program to investigate a class of singularities that arise 

in mathematical models describing interface dynamics in multiphase flow. The main focus 

was the process of liquid ligament pinch-off, the understanding of which is crucial to the 

first-principle modeling of fuel spray atomization. The singularities arise from the continuum 

Navier-Stokes formulation of two-phase flow as liquid-gas interfaces approach each other 

towards pinch-off. Physically, the continuum concept of surface tension at an infinitesimally 

thin interface does not hold when molecular fluctuations begin to be comparable to inertial 

and viscous forces. The question to be addressed is whether there is a unique continuation 

(through singularity) of the continuum solution obtained from the model discretization 

implemented in multiphase algorithms. From the computational standpoint, the crucial point 

is whether initial conditions after the singularity depend on the details of the numerical 

discretizations leading to pinch-off. 

The objective of the project is to develop a physically/mathematically consistent multi-scale 

computational approach to continue the solution through the formal singularity described 

above. The multi-scale approach consists of a macroscopic, time-resolved interface-capturing 

simulation of two-phase flow; a singularity-free mesoscopic simulation that bridges atomic 

and continuum scales; and a physics-based closure model derived from the mesoscopic 

analyses to be embedded into the macroscopic continuum to bypass the singularity issue. 

 

0.2 Summary of accomplishments 

The overall objective of developing a mathematically/physically consistent multiscale and 

multiphase numerical approach to continue simulations through singularities due to 

topological changes of the interface was accomplished. The simulation framework developed 

under this project will be applied to future high-fidelity simulations of engine spray 
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atomization to accurately predict fuel droplet statistics and guide engine design, and it is 

expected to have a substantial impact in the jet-engine industry. 

Towards the first objective of documenting and explaining the inconsistencies of continuum 

direct numerical simulations of non-disperse two-phase flow, it was successfully 

demonstrated that the mathematical singularity of assuming an infinitesimally thin interface 

near the pinch-off of a liquid jet leads to divergence of simulation in terms of interface 

position and flow pressure. An advanced interface-capturing multiphase solver developed 

previously by UTRC was used to simulate a canonical case of drop pinch-off under capillary 

and straining effects. After the lack of convergence with grid refinement was demonstrated, 

several algorithms were tested to bypass the pinch-off singularity by numerically forcing 

breakup at an assigned threshold. The results are documented in Subsection 1.1. 

To achieve a better understanding of interface fluctuations, the project next was focused on 

developing a mesoscopic simulation approach that bridges molecular and continuum scales. 

The development was based on the general framework of dissipative particle dynamics 

(DPD). Several accomplishments are worth mentioning. A many-body dissipative particle 

dynamics (MDPD) code, obtained by combining short-range repulsive and long-range 

attractive forces, was applied to vapor/liquid simulations. Based on the radial distribution of the 

virial pressure in a drop at equilibrium, a systematic study was carried out to characterize the 

sensitivity of the surface tension coefficient with respect to the inter-particle interaction 

parameters: particularly, the approximately cubic dependence of the surface tension coefficient 

on the bulk density of the fluid was evidenced for the first time. In capillary flow, MDPD 

solutions were shown to satisfy the Plateau-Rayleigh condition on the wavelength of an axial 

disturbance leading to the pinch-off of a cylindrical liquid thread; correctly, no pinch-off 

occurred below the cutoff wavelength. The results are documented in subsection 1.2. 

The objective of developing a coupling between the particle (P) and continuum (C) 

formulation was limited to the one-way coupling of the continuum simulation providing 

time-dependent boundary conditions to the particle simulation. This required the 

development of a Non-Periodic Boundary Condition (NPBC) algorithm for two-phase flow 

that can preserve a liquid gas interface through a non-periodic boundary. Several non-

periodic algorithms are described in the literature for bulk flow fluid dynamics, but none, to 

the PIs‟ knowledge, for free surface flow. The full two-way coupling was found to be 

irrelevant to the overall objective of developing a closure model to allow continuation 

through singularity. Particularly, it was found that the objective of two-phase flow 

applications only require small-scale information to be fed into the large-scale simulation, 

and not vice-versa. Thus only one-way coupling is required. The funding was then focused 

on the development of a physics-based closure model and a generic implementation of the 

model in the continuum direct numerical simulation. 

To develop a continuum closure model based on detailed physics, scaling analysis was 

performed on the mesoscopic simulation results from MDPD. The analysis illustrates the 

cascade of fluid dynamics behaviors from potential to inertial-viscous to stochastic flow, and 

the dynamics of a liquid jet minimum radius is consistent with the power law scaling 

predictions from asymptotic analysis. One major accomplishment is the key finding that the 

scaling transition is dependent on fluid properties only and independent of external flow 

conditions. The transition point can therefore be used as the threshold to enforce numerical 

breakup, leading to physically accurate and grid converged solutions. Because of the 

condition-independent nature of the threshold, the same threshold for breakup can be applied 



3 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

for any pinch-off processes occurring in the simulation domain, independently from their 

local strain environment. Thus, the scaling transition point becomes the only parameter for 

the closure model. This model was implemented in the continuum two-phase flow solver in a 

completely grid-independent fashion. The implementation was demonstrated to converge 

under the physical breakup threshold and thus provide physically, mathematically and 

computationally consistent results. These results are documented in subsection 1.3 and 1.4. 

 

0.3 Organization of the report 

 

A comprehensive set of results is available in published papers and from the proceedings of 

conferences attended by the PI‟s. In this report, we provide more details for the key results 

obtained during the project. References to journal papers, conference papers and 

presentations are provided. A list of references is available in the last chapter of the report. 

 



4 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

Contents 

 

  0.1 Objectives  .......................................................................................................................  

 0.2 Summary of accomplishments .........................................................................................  

 0.3 Organization of the report  ...............................................................................................  

 

 

1 

1 

3 

 
1  Summary of research results 5 

 

 

 

1.1 Demonstration singularity in continuum two-phase simulations  ..................................... 6 

  1.1.1 Continuum two-phase approach  .............................................................................. 6 

  1.1.2 Singularity demonstration in continuum simulations .............................................. 6 

  1.1.3 Bypassing singularity by threshold breakup: numerical tests .................................. 9 

 1.2 Development of a singularity-free meso-scale simulation approach ................................ 12 

  1.2.1 Background of MDPD ............................................................................................. 12 

  1.2.2 Numerical details of MDPD..................................................................................... 13 

  1.2.3 Application to liquid-vapor interface dynamics ....................................................... 15 

  1.2.4 Non-periodic boundary conditions ........................................................................... 19 

 1.3 Scaling analysis of pinch-off using meso-scale simulations ............................................. 22 

  1.3.1 Theoretical background of pinch-off scaling ........................................................... 22 

  1.3.2 MDPD scaling analysis for capillary pinch-off ....................................................... 23

X 
  1.3.3 MDPD scaling analysis for pinch-off in straining flow ........................................... 24 

 1.4 Development and demonstration of continuum-scale closure model ................  analyses  27 

  1.4.1 Closure model development from scaling analysis .................................................. 27 

  1.4.2 Generic implementation of the closure model ......................................................... 27 

  1.4.3 Demonstration of simulation convergence using the closure model ....................... 29 

2 Personnel supported  31 

3 Publications and presentations  32 

 

 

 



5 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

Chapter 1 

Summary of research results 

 

While multiphase flow involving complex topological changes occurs in a wide range of Air 

Force applications, observation of the multi-scale interfacial dynamics in a laboratory is 

limited by the difficulty in controlling the boundary conditions of the experiment and by 

constraints on instrument time response versus available field of view. The development of a 

mathematically correct and computationally feasible approach is a key step to achieve a deep 

understanding of the process.   

This project aims to address a fundamental limitation in the first-principle simulations of 

multiphase flow. Asymptotic analysis indicates that the Navier-Stokes (NS) equations for 

multiphase flow lead to interface singularities. In this report, the limitation of simulations 

based on the discretization of multiphase NS equations is first demonstrated using a 

macroscopic Coupled Level Set and Volume Of Fluid (CLSVOF) interface-capturing 

approach (subsection 1.1). To identify when microscopic dynamics affects macroscopic 

physics, a computer code based on Many-body Dissipative Particle Dynamics (MDPD) was 

developed that bridges molecular and continuum scales (subsection 1.2). This effort enabled 

the creation of a “virtual test facility” for small-scale multiphase flow, whose results do not 

depend on prior calibration. The “facility” allows the derivation of detailed asymptotic results 

for pinch-off (subsection 1.3) and the development of a closure model embedded in the 

macroscopic simulation to achieve physically/mathematically consistent results in the 

presence of liquid pinch-off (subsection 1.4). The main elements of this research are 

summarized in the sketch below.  

Figure 1. Summary of research elements for the investigation of computational 

continuation through multiphase singularity. 
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1.1 Demonstration of singularity in continuum two-phase 

simulations 

 

 
1.1.1 Continuum two-phase approach 

In the continuum approach adopted for this project, the CLSVOF method [1] is used to 

directly capture the evolution of a liquid-gas interface. Briefly, the Navier-Stokes equations 

for incompressible flow of two immiscible fluids are augmented with a smooth level set 

function , whose zero level represents the time-evolving interface. In addition to the 

evolution equation for , the transport equation for the cell liquid volume fraction (the 

volume-of-fluid function, F) is also solved. The interface normals used in the VOF 

reconstruction step are determined from the level set function. The volume fractions and the 

normals are then used to construct a volume preserving distance function . Essentially, 

volume is preserved by implementing a „„local‟‟ mass correction at every iteration. Second-

order accurate curvature is calculated from F by the method of height fraction.  

The solver is implemented under the framework of adaptive mesh refinement (AMR) to 

reduce the computational cost of resolving multi-scale interface dynamics. A detailed 

description of the block-structured AMR can be found elsewhere [2]. Cells that are crossed 

by the liquid-gas interface are tagged for refinement. Starting from the base level, boxes (with 

a minimum size of, say, 32
3
 cells) are combined to cover all the tagged cells within assigned 

coverage efficiency. This set of blocks with the same grid spacing forms level 1. This level is 

in turn tagged for refinement at the interface, and the process is repeated until the required 

grid resolution is achieved.  The block-structured AMR framework allows easy 

implementation of special finite differencing schemes for multiphase flow on Cartesian grids.  

1.1.2 Singularity demonstration in continuum simulations 

We consider the pinch-off of a dumbbell-shaped drop due to either capillary effects or 

elongation effects in a straining flow. The simulation convergence is tested by a grid-

refinement study using AMR. The lack of convergence in the simulations shown next points 

to the singularity due to the topology change of the drop. The axisymmetric water drop is 

immersed in an extensional flow, as shown in Fig. 2, with velocity field  
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where   is the straining rate. The center of the drop overlaps with the stagnation point of the 

extensional flow. Its initial shape is prescribed as  

. 

In the absence of the external straining flow, the drop may experience breakup driven by 

capillary effects or recover to spherical shape, depending on the ratio λ/D being larger or 

smaller than  [27]. With extensional straining, the drop can be elongated and finally broken 
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by the external flow if the strain rate is large enough. Here we select two different values of 

wavelength, under which the drop breaks up by capillary effects (λ/D=3.75>π) and by 

elongation at high strain rate λ/D=2.5<π, 
-13 s 10 ), respectively. 

    

Figure 2. The dumbbell-shaped water drop placed in the center of an extensional 

straining air flow. 

 

In the following tests, the computational domain is set to be 15 cm × 60 cm and covered with 

a uniform base grid of 64 × 256. Refinement was performed by successively adding 

refinement levels near the water-air interface, yielding effective grid resolutions of 128 × 512 

at one level and 256 × 1024 at two levels. 

The locations of the water-air interface prior to, near, and post pinch-off are shown in Fig. 3 

for the capillary case ( 0 ), in (a), and for the straining case (
-13 s 10 ), in (b). Results 

from different refinement levels are shown together in the same plots. It can be observed that 

the interface locations converge prior to pinch-off for both cases. Near pinch-off, 

discrepancies between different refinement levels are observed, and even larger discrepancies 

are found post pinch-off. Comparing the two cases in (a) and (b), we find that the breakup 

under the straining flow is more sensitive to grid discretizations for this set of conditions. The 

interface disconnects due to numerical interface capturing issues when the neck region 

becomes under-resolved.  
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                                      (a)                                                                 (b) 

 

 (c)                                                                 (d)                                                                                                               

Figure 3. The interface location predicted using different resolutions for the capillary 

case (a) and extensional case (b). Corresponding maximum pressure at the pinch-off 

location for the capillary case in (c) and the extensional case in (d).  

The corresponding maximum pressure at the pinch-off location is plotted in Fig. 3(c) for the 

capillary case and in Fig. 3(d) for the straining case. Both sets of curves show that the 

maximum local pressure, as a function of time reaches a peak at pinch-off. At different grid 

resolutions, the peak values differ, increasing with decreasing grid size because of smaller 

ligament width that can be resolved by the grid and therefore higher interface curvatures. It 

can be extrapolated that the pressure will not converge with further increase of resolution 

because the theoretical value of pressure approaches infinity at pinch-off. Because of the lack 

of convergence, the prediction of pinch-off time becomes highly sensitive to grid resolution. 

As shown in Fig.3 (c) and (d), the peak pressure shows up at different times for different grid 

resolutions and the discrepancies are further amplified in the extensional case (d) compared 

to the capillary case (c).   

The above simulation results tell that a grid-converged simulation of pre-pinch-off liquid-gas 

interface diverges when the interface approaches pinch-off point. This result is consistent 

with the Laplace law predicting that the capillary pressure inside the liquid ligament depends 

linearly on the liquid surface curvature. Numerically, the high-pressure build up inside the 

0 level 
1 level 
2 level 

0 level 
1 level 
2 level 
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ligament leads makes it increasingly difficult for the solver to provide an accurate flow 

solution. A closure model is therefore necessary to continue simulating the post pinch-off 

portion and bypass such computationally challenging point.  

 

1.1.3 Bypassing singularity by threshold breakup: numerical tests 

 

Before introducing the physics-based closure model in subsection 1.4, we verify our findings 

on singularity by numerical forcing breakup at a prescribed threshold to bypass the 

singularity and achieve simulation convergence.  

  

 

    

 

                 (a)            (b)               (c)       (d) 

Figure 4. Different numerical approaches to introduce threshold breakup.  

For the time being, the threshold is set for demonstration purposes and we do not apply any 

physical argument to determine its value. The most critical step in forcing breakup is to find 

the instant when the ligament reaches the prescribed threshold. Once the simulation reach this  

threshold length f  the state at the center of the ligament can be forced to change from liquid 

to gas by modifying the level set and volume of fluid functions. As shown in the schematics 

in Fig. 4, there are several different ways of defining f and correspondingly different 

numerical approaches to force breakup.  

The first approach, shown in frame (a), uses a value of critical pressure. For a thin cylindrical 

ligament, the pressure difference between liquid inside and gas outside is 



P  r . When 

the ligament size reaches the threshold length f , the pressure inside reaches a critical value 

gfc PP   , assuming the pressure in the gas phase gP  is constant. For each step in our 

simulation, we search for a location that has a global maximum pressure value.  If the 

maximum pressure reaches the critical pressure cP , we force breakup to occur at this 

location.  

The second approach in frame (b) and the third approach in frame (c) are based on the level 

set geometric description of the interface. In the level set description, a distance function  is 

used to define a field that has the interface embedded as the zero distance contours. 

Therefore, the distance to the interface is explicitly available at any location. A narrow-band 

with size 2f  can be defined so that the distance from all the points within this band to the 

interface is less than 2f . The thinning process of a ligament can be viewed as the 2f -

size band contracts and moves inward. When the band merge with itself at a certain location, 
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the size of the ligament is decreased to f  and the ligament is numerically forced to breakup. 

We found two numerical approaches to identify the location and instant for band merging. 

One as shown in Fig. 4(b) is to find a cell such that the module of the gradient of the level set 

function, |  |, significantly deviates from 1 (For a level set function defined by distance to a 

surface with radius of curvature larger than 2f , 



 1 always holds). Another approach, 

shown in Fig. 4(c) is to find a cell that is tagged as a band cell for multiple times.  

The fourth approach shown in Fig. 4(d) is the direct prescription of the pinch-off instant 

irrespective of the ligament state. This approach, requiring a-prior knowledge of the pinch-off 

location and therefore not applicable to a generic configuration, is expected to provide 

reference results with the least amount of numerical discrepancy at different resolutions. 

 

   

                                 (a)                                               (b)  

   

          (c)                                                  (d) 

Figure 5. The interface location predicted at different resolutions using different 

threshold breakup approaches as in Fig. 4.  

The interface location and maximum pressure for the straining case (
-13 s 10 ) using the 

four different threshold breakup approaches are shown in Fig. 5 and Fig. 6 respectively. 

Results from different refinement levels are shown together in the same plots. Compared to 

Fig. 3 (b) and (d), all the threshold approaches predict much less discrepancy between 

simulations at different resolutions near and post pinch-off. Due to the numerical 



11 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

approximation involved in computing the threshold pressure, the level set gradient and level 

set band width near the pinch-off location, different approaches reflected different type of 

sensitivities to the grid resolution. Even if using the same ligament width threshold, the level 

set gradient approach in frame (b) and the multi-band cell tagging approach in (c) predict 

different convergence behaviors. As expected, the pinch-off time prescription in (d) predicts 

the least amount of discrepancy between different resolutions.  

 

                                 (a)                                               (b)  

 

          (c)                                                  (d) 

Figure 6. The maximum pressure at the pinch-off location at different resolutions using 

different threshold breakup approaches as in Fig. 4. 

 

The threshold breakup tests discussed above verified that the reason for simulation 

divergence is the singularity present at the pinch-off instant. Bypassing the singularity can 

effectively provide a grid-converged simulation. However, the remaining question is how to 

0 level 
1 level 
2 level 

0 level 
1 level 
2 level 

0 level 
1 level 
2 level 

0 level 
1 level 
2 level 
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develop a mathematically/physically consistent model in order to bypass the pinch-off 

singularity and still accurately capture the process post pinch-off. This motivates the 

development of a meso-scale approach to achieve a detailed understanding of the pinch-off 

physics. 

  

 

1.2 Development of a singularity-free meso-scale simulation 

approach 

 

As shown in the previous section, numerical convergence near liquid pinch-off is difficult to 

achieve due to the singular nature of the continuum formulation. Physically, the effects of 

molecular scale fluctuations, which are averaged out in the continuum formulation, start to play 

a critical role near pinch-off. To correctly account for all the physics, a new model needs to be 

developed to incorporate molecular-scale information. Doing so in the continuum framework is 

challenging because the framework is established on the Navier-Stokes equations based 

continuum assumption. Particle based approach such as molecular dynamics can directly 

capture the molecular events, but at a prohibitively high cost. In this project, the mesoscopic 

Dissipative Particle Dynamics (DPD) approach is adopted to bridge the molecular and 

continuum scales. The interfacial dynamics is accounted for using a variant of DPD called 

Many-body DPD described below. 

 

1.2.1 Background of MDPD 

The advantage of dissipative particle dynamics (DPD) resides in the simplicity of the underlying 

algorithm of particle interaction under a soft repulsive potential. It has been shown that DPD can 

be constructed as a mesoscopic model of molecular dynamics (MD) [6], where the coarse-

graining of Lennard-Jones clusters can lead to a suitable DPD force field. This result holds at 

sufficient low densities and for small ranges of gyration, when many-body effects can be 

neglected. 

DPD has been used to investigate phase separation in immiscible binary liquid mixtures [7]-[9] 

droplet deformation and rupture in shear flow [10], and droplets on surfaces under the influence 

of shear flow [11]. In single-species fluid problems, however, the standard DPD method 

presents a fundamental limitation, in that the repulsive soft potential alone cannot reproduce 

surface tension. This potential leads to a predominantly quadratic pressure-density equation of 

state (EOS) [12], while a higher-order pressure-density curve is necessary for the coexistence 

of the liquid and vapor phases. 

The free energy of the DPD system was modified by Tiwary and Abraham [13] to include a 

correction directly derived from the van der Waals EOS. The new term added the long-range 

attractive force that is responsible for surface tension between the liquid and the vapor phase; 

surface tension emerges from the asymmetry of the intermolecular forces acting on a layer of 

molecules at the liquid-vapor interface. As this asymmetry causes larger intermolecular 
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distances in the outer layer than in the liquid bulk, the forces in the layer act to contract the 

interface. 

The many-body DPD (MDPD) method by Pagonabar-raga and Frenkel [14] also included an 

attractive force. The amplitude of the soft repulsion was made proportional to the local density 

of the particles, thus achieving a cubic pressure-density relation. A similar approach was 

introduced by Nugent and Posch in the context of smoothed particle hydrodynamics (SPH) [15]. 

The connection between MDPD and SPH was then clarified by Español and Revenga [16], who 

introduced a smoothed DPD (SDPD) method as a SPH variant based on a new formalism 

developed for discrete hydrodynamics [17]. 

MDPD was extensively investigated by Warren [18] and Trofimov et al. [19]. The method can 

be used for the study of single species free-surface flow, for instance, in the case of pinch-off of 

a liquid thread during the formation of a drop. There, the vanishing liquid thread diameter 

induces a singularity in the hydrodynamic description of a two-phase flow interface that is at 

odds with the continuum description of surface tension as a taut membrane of zero thickness. 

However, the focus of past research has been mostly on bulk properties, namely, the pressure-

density relation [18].
 
 This project focuses instead on the interfacial behavior of the MDPD fluid, 

on the sensitivity of the surface tension coefficient σ to the particle interaction parameters, and 

on the comparison with the properties of real liquids.  

In the following, an extensive set of simulations is presented for a liquid with number density 

ρ in coexistence with a very dilute vapor. The dependence of σ from ρ is investigated based on 

a table of representative interaction parameters. An approximate mean-field expression is 

derived to directly evaluate the surface tension coefficient from the interaction parameters. 

The simulation of liquid thread pinch-off is then verified using analysis results derived in the 

limit of a slender jet.  

All the simulations are enabled by the particle dynamics software code LAMMPS (Large-

scale Atomic/Molecular Massively Parallel Simulator) [20]
 
with the addition of a new MDPD 

class. The computationally scalable implementation of LAMMPS guarantees the 

optimization of the particle interaction calculation through an efficient neighbor list 

algorithm, and will not be discussed in this work. 

 

1.2.2 Numerical details of MDPD 

MDPD inherits the three pairwise-additive inter-particle forces formulation of the standard 

DPD scheme, 
R

i jji

D

i j

C

i ji t FFFF
21


 , with t  the simulation time step. The 

conservative, dissipative, and random forces of this expression are defined, respectively, as 

ijij

C

ij

C

ij rF rF ˆ)( ,  

ijijijijD

D

ij r rrvF ˆ)ˆ)((   ,  

ijijRij

R

ij r rF ˆ)( ,  
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where 
ijijij r/ˆ rr 

 
and jiij vvv  . Warren‟s approach [18] is pursued for C

ijF ; the repulsive 

force depends on a weighted average of the local density, whereas the attractive force is 

density-independent, 

)()()( i jdjii ji jci j

C

i j rwBrwAF   .  

The weight functions wc(r) = (1 − r/rc) and wd(r) = (1 − r/rd) vanish for r > rc and r > rd, 

respectively. Since a DPD method with a single range may not have a stable interface, the 

repulsive contribution is set to act at a shorter range rd < rc than the soft pair attractive 

potential. 

The many-body repulsion is chosen in the form of a self-energy per particle which is 

quadratic in the local density, )()( ijdjiij rwB   , where B > 0. The density for each particle is 

defined as 





ij

iji rw )( ,  

and its weight function wρ is defined as 

  2

3
)/1(

2

1 5
drr

r
rw 


  

wρ vanishes for r > rd and for convenience is normalized so that 1)(3  rwd r . 

The DPD thermostat consists of random and dissipative forces. The ij  coefficients are 

independent identically distributed Gaussian random numbers with zero mean and unit 

variance. The equilibrium temperature T is maintained through the condition posed by the 

fluctuation-dissipation theorem 

2)]([)( rrw RD  ,  

TkB 22  ,  

where kB is the Boltzmann constant. The weight function for the dissipative force is 

2)/1()( cD rrrw  .  

All the simulations presented in this report are carried out with the velocity Verlet algorithm 

of Groot and Warren [21]
 
using the value 0.5 for the empirical parameter. 

Dissipative particle dynamics methods operate in reduced units, such that energy is measured in 

units of kBT; length in units of rc, and mass in units of mass of a single particle, m. In the 

following discussion, we will find it convenient to refer to dimensionless quantities such as the 

Ohnesorge number and the Bond number.  
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1.2.3 Application to liquid-vapor interface dynamics 

The operational expression to calculate surface tension at liquid-vapor equilibrium uses the 

macroscopic normal and tangential pressure values, or, alternatively, a perturbation formalism 

where surface tension is expressed as the energy difference between a reference state and a 

state with an infinitesimal area variation. Reference [21] compares the thermodynamic and 

mechanical routes for MDPD. We examine here the simplified relation that is established 

between the pressure difference ΔP across the liquid-vapor interface and the shape of a 

capillary surface according to the Young-Laplace equation (Y-L), 

)
11

(
21 RR

P          

In this expression, R1 and R2 are the principal radii of curvature of the surface. The Y-L relation 

is deduced from mechanical stability, and it has been shown to hold even for nanometer-size 

bubbles [23]. The internal pressure of a liquid can be calculated from 

   



ji

c

jiji

vi rial

V
p ,

2

6

1

3
Frrvv


,  

where  denotes the sample average of the particles contained in the volume V and v is the 

sample velocity after being spatially averaged on V. The first term on the right-end side 

represents the thermal agitation of the molecules of the system. The second term is due to the 

interaction potential. 

By way of illustration, drops with different diameters are simulated from an initial spherical 

lattice of particles in a box with periodic boundary conditions. The size of the box ensures that 

the drop is isolated. The initial random velocity distribution is at kBT = 1. This value is 

maintained in the simulation by fixing the parameters ξ = 1 and γ = 0.5. The virial pressure at 

equilibrium is plotted in Fig. 7 as a function of radius for the set A = −40, B = 25, rc = 1, rd = 

0.80. In this exercise there is no change in coarse-graining when the droplet radius is varied 

from one simulation to the next. 

In examining the diagram in Fig. 7(a), it is apparent that the thermal contribution of the virial 

pressure is constant over most of the drop and that the plateau value is ρkBT (the number 

density is 4.76). At the liquid-vapor surface, the thermal contribution decreases to zero within 

approximately one unit length. It can be shown that the actual extent of this transition region 

depends on the temperature of the drop and becomes larger at higher temperatures. The 

conservative term in Fig. 7(b) has a more complex behavior. Past the fluctuations near the 

droplet center, this term reaches a constant value when the number of sampled particles 

becomes sufficiently large. 

The negative dip at the drop surface can be attributed to the strengthening of the attractive force 

as outward layer particles on average possess a larger inter-particle distance compared to the 

bulk particles. Further away, the longer-range attractive force vanishes, the virial pressure 
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becomes less negative, and it eventually goes to zero when the average inter-particle distance is 

larger than rc. 

The sum of the conservative and thermal terms forms the overall pressure field and is displayed 

in Fig. 7(c). The difference between the normal and the tangential component of the spherical 

interface is displayed in Fig. 7(d). For clarity, the diagrams from the smallest of the three 

droplets are omitted in this figure. The positive peak at the drop interface, followed by noise in 

the bulk (also omitted for clarity), illustrates the non-hydrostatic nature of the virial stress 

tensor that is responsible for surface tension. This diagram is consistent to what has been 

observed in molecular dynamics simulations for a Lennard-Jones fluid in a slab geometry [24]. 

The surface tension coefficient can be calculated directly according to the Y-L relation from the 

slope of the lines fitting the values of AP at various diameters; see Fig. 8. It is noted that this is 

not the only methodology to evaluate σ and that a more complete discussion can be found, for 

instance, in Refs. [13] and [21]. The radius of curvature of the drop is determined from the 

point where the number density falls below half of the bulk density value. This is a relatively 

precise measurement given the steepness of the interface at this temperature. The internal 

pressure is taken from the virial plateau value, with an uncertainty of ±0.4 for the smallest 

droplets and of less than ±0.002 for the largest drops in the range considered here. The MDPD 

parameters and the corresponding values of σ are listed in Table I. The values found for Sets 2 

and 7 are in close agreement with the values reported in Ref. [18] (4.95 and 7.54) for the same 

parameters. 

 

 

Set A B rd ρ σ σ fit 

1 −40 40 0.80 3.94 1.90 3.33 

2 −40 40 0.75 5.12 4.69 5.63 

3 −30 25 0.75 5.27 3.51 4.48 

4 −40 80 0.70 5.47 6.89 6.36 

5 −50 40 0.75 5.60 8.42 8.43 

6 −30 20 0.75 5.80 4.48 5.44 

7 −40 25 0.75 6.10 7.30 8.02 

8 −40 40 0.70 6.51 10.2 9.11 

9 −40 20 0.75 6.77 9.14 9.90 

10 −40 25 0.70 7.82 14.7 13.2 

TABLE I. Parameter sets and properties of MDPD fluids. The bulk density ρ and the 

surface tension coefficient σ are calculated for kBT = 1. 
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Figure 7. Virial pressure as a function of radius for three drops of fluid 1 (the 

interaction parameters are listed in Table I): (a) contribution of thermal motion; (b) 

contribution of the conservative forces (c) resulting virial pressure; (d) radial minus 

tangential component of virial pressure. 
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Figure 8. Pressure difference across the liquid-vapor interface of a drop in equilibrium 

versus its curvature for the 10 MDPD fluids listed in Table I. 

 

 

The occurrence of capillary pinch-off has already been demonstrated by a modified DPD 

method [24] as well as by pioneering molecular dynamics simulations [26]. Here, we 

examine whether MDPD captures the correct fluid dynamic behavior by assessing the 

response of a quiescent circular jet of diameter D to a periodic axial perturbation. It is well 

known that the jet becomes unstable if λ/D > π [27]. Above that cutoff wavelength, the 

cylinder surface is driven toward the state with the smallest area, and, locally, to pinch-off. In 

this process, the greater the cohesion between the particles (and thus the surface tension), the 

faster the instability develops. Below the cutoff, surface tension has the opposite role of 

restoring the jet to its unperturbed state. In the inviscid description of the Plateau-Rayleigh 

instability [28], linear analysis of perturbation leads to the maximum growth of a disturbance 

for λ/D~4.5. By dropping viscosity from dimensional analysis, the characteristic pinch-off 

time is 

 3D   

 

As a demonstration, simulations are carried out for two jet diameters in a 10
3
 box with 

periodic boundary conditions and sinusoidal perturbation of wavelength λ = 10. The MDPD 

parameters correspond to Set 2 in Table I. The random and dissipation coefficients are ξ = 12 

and γ = 72; the time step is Δt = 0.001. 

 

In the first simulation, we set L/D = 4.5 with 251 particles. Fig. 9(a) displays a sequence of 

snapshots as seen through a slice of the jet. Initially, the amplitude of the perturbation is only 
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one layer of particles. The jet begins to neck at around t = 2.7 and pinches off soon thereafter, 

so that by t = 13 the two half droplets have fully equilibrated. The characteristic time is τ = 

3.46. The actual time to pinch-off depends on the seed values that are used to generate 

random numbers for the stochastic force and for the initial velocity distribution. It is, 

however, well defined in every realization of this case. 

 

In the second simulation, the diameter is increased to D = 5, with 1116 particles. No capillary 

instability develops, even for large amplitude perturbations, and the jet returns to a cylindrical 

shape under the restoring force of surface tension. The simulation can continue for a very 

long time (the last frame of Fig. 9(b) shows a snapshot at t = 200) without pinch-off ever 

occurring. This and the previous result are consistent with the Plateau-Rayleigh analysis. 

 

 

 

 
 

Figure 9. Snapshots of capillary dynamics of a liquid thread: L/D = 4.51 (top) and L/D = 

2.5 (bottom). 

 

 

1.2.4 Non-periodic boundary conditions 

 

A novel element in this study is the implementation of a Non-Periodic Boundary Condition 

(NPBC) to broaden the application of particle methods and study straining gas-liquid fields. 

A first challenge is that the boundary conditions need to include the right amount of attractive 

force, responsible for the continuity of the liquid. Implementation of a simple reflecting wall 

alone is not sufficient because there would not be any force anchoring the MDPD boundary 

particles. Also, an effective-force approach where potential is applied to impose the desired 

kinematics is insufficient to keep the liquid and gas phase separated.  

As shown in the schematics of Fig. 10, two layers of particles are built into the domain on 

each side of the computational box where the NPBC is assigned. The outermost layer (O) is 

modified at every iteration by placing particles of the prescribed type. This layer is a fixed 

(no time integration) barrier whose composition depends on the instantaneous location of the 

boundary interface. Layer (O) provides the necessary attractive force for the continuity of the 

MDPD liquid.  



20 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

Particles from the innermost (I) layer of the buffer are free to move according to the 

distribution of the surrounding particles. At the end of every iteration their velocity is 

modified so that 1) the average particle velocity of a cell of the buffer matches the prescribed 

velocity of that buffer; 2) the squared deviation from that average value matches the 

prescribed temperature. Here, “cell” refers to an element of volume of side Li= ni
-1/3

, where n 

is the number density of component i; see Fig. 10. Particles are free to cross in both directions 

the boundary between the (I) layer and the domain proper, but particles crossing the 

separation between layers (I) and (O) are reflected back. This wall moves at the velocity of 

the normal component of vb. 

 

 
 

Figure 10. Schematics showing the prescription of composition and velocity at a face 

boundary. 

 

A numerical test discussed here is the enforcement of the extensional configuration displayed 

in Figure 2, with minimum radius of the dumbbell R = 6.5. The flow field is achieved by 

imposing NPBCs on the sides of a 50
3
 box. The domain initially contains 14,512 particles of 

liquid and 15,924 particles of gas. The liquid particles have the properties listed above; the 

gas particles are treated as DPD particles (no attractive force): A = 10, rc  = 1, B = 0, rd = 

0.75;  = 288, and  = 24. These parameters correspond to  = 0.84 and n = 1.2. To obtain a 

liquid/gas density ratio of 780, the mass is set to m = 0.0064.  

The time-averaged velocity of the particles arranges itself quickly to a fully developed 

extensional field. As time progresses, liquid particles exit the domain while more gas 

particles enter it. To account for the advection component involved in imposing a prescribed 

strain rate, the time step is set to 0.00004 in DPD units. Thus, a calculation including the 

interaction with the gas phase is substantially more expensive than the single-component 

simulations of capillary pinch-off discussed earlier. Also, NPBCs require two additional 

layers of particles for each boundary pair – a 12% increase in the overall system size. Fig. 11 

shows an excellent agreement with the corresponding CLSVOF simulation at three instants 

preceding pinch-off. 

 



21 

Distribution Statement A: Approved for public release; distribution is unlimited 

 

 

 

 

 

   

   

Figure 11. Axis-symmetric dumbbell subject to extensional flow: CLSVOF (top) and 

MDPD  (bottom) snapshots before pinch-off. 
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1.3 Scaling analysis of pinch-off using meso-scale simulations 

 

 
1.3.1 Theoretical background of pinch-off scaling 

Theoretical description of interface dynamics when a liquid thread shrinks to zero near pinch-

off – and interface curvature goes to infinity – has been rare in the literature. A notable 

exception is Eggers‟ similarity solution derived for drop pinch-off in free-surface flow [29]. It 

is shown that pinch-off at (x0, t0) is a singularity of the Navier-Stokes equations in a critical 

region 1' x  and 1't , where 


0'

xx
x


   and   


0'

tt
t


 . 

The parameters   and  depend only on the property of the liquid,  

  
2   and     232   , 

with , , and σ are the liquid viscosity, density and surface tension, respectively. For water 

( = 1000 kg/m
3
;  = 1.138 10

-6
 m

2
/s; σ = 0.0728 N/m), these viscous length (   = 1.77 10

-8
 

m) and time (  = 2.78 10
-10 

s) scales are very small compared to scales in most continuum 

simulations. An important consequence of Eggers‟ work is that the minimum liquid thickness 

along the ligament scales linearly with the time left to the singularity time t0, 

 003.0 tthmin 



 , 

 

Figure 12. Sketch of the flow geometry investigated by Eggers [29]. 

 

Another analytical work by Lister and Stone [3] applied the asymptotic balance between 

surface tension and viscous stress,  

minmin huh /~  , 

which also suggest the thinning rate of the thread u becomes asymptotically constant in time, 

  /~u   

hmin 

axis of symmetry 
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and pinching-off occurs with a finite period. All the work suggests that Navier-Stokes 

equation is singular at the point of pinch-off and it has a self-similar solution in the limit of 

the singularity. The solution is universal, in the sense that it is independent from the 

particular initial or boundary conditions of the experiment.  

The physics of liquid pinch-off is in fact more complex than that described by Navier-Stokes 

equations. Intuitively, it can be expected that when the liquid thread thickness is comparable 

to the scale of thermal fluctuations that are averaged out in the continuum description – or to 

the actual interface width (~100nm) – the Navier-Stokes description of two-phase flow 

breaks down. For liquid, the thermal length scale, 

  21
/TkBT  , 

accounts for the fact that molecules at the interface have energies due to both thermal motion 

and surface tension. T  is of the order of a nanometer in most fluids at room conditions. In 

free surface flow, a threshold length exist, 

52

~ 
















 T

thr es , 

below which thermal capillary instabilities can cause the interface to behave stochastically. 

For fuel at ambient temperature, thres  = 1 m, which is comparable to the thickness of the 

liquid thread that forms before pinch-off.  

The domain concerned by thermal fluctuations (up to a few hundreds of nanometers) has 

been recently probed by Molecular Dynamics (MD) simulations. MD simulations of nanojets 

show a substantial change in behavior near pinch-off [30]. This behavior is predicted by the 

stochastic lubrication equation (SLE) [26], derived from the Navier-Stokes equations in the 

limit of a slender jet and with the addition of Gaussian noise to the deterministic stress tensor. 

The relation between hmin and t0 − t is described by a power law with exponent 0.418, found 

by numerical integration [31]. 

 

1.3.2 MDPD scaling analysis for capillary pinch-off 

 

To establish a connection with the theory, the results from previous MDPD simulation of 

dumbbell drop breakup by capillary effects (subsection 1.2.3) are post-processed and the 

minimum thread radius hmin are plotted as a function of the time to breakup, t0 – t in Fig. 13. 

The time to pinch-off in Fig. 13 is normalized by τ, whereas hmin is normalized by the 

unperturbed jet radius R. To track the minimum jet radius, it is necessary to post-process 

several snapshots of particle positions, each axially sliced into 50 bins. It is assumed that the 

only 1% or less of the particles lie outside the surface of the jet, a threshold consistent with 

almost no vapor phase. The jet radius, calculated with respect to the instantaneous position of 

the center of mass in each slice, is defined based on the radial histogram of number density. 

The pinch-off time is established as the instant when one of the bins becomes empty. The 

simulation is carried out in a 80
3
 periodic cube using the parameter set 7 from Table I for a 

system of 118,657 particles; the time step is Δt = 0.001. The dissipation and random 
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coefficients are σ = 0.5 and ξ = 1, giving ν = 0.072; the Ohnesorge number is therefore Oh = 

0.022.  

 

The logarithmic plot of hmin(t0 − t) in Fig. 13 demonstrates that a single MDPD simulation 

can span the three scaling behaviors listed above. Initially, and for almost a time decade, the 

tracked points are aligned along the 2/3 slope. The inertial-viscous behavior appears at 

approximately hmin=0.3R and is quickly overtaken by a trend where most of the points align 

along the slope 0.418. This occurs approximately at hmin=0.15R, above the thermal capillary 

length lT = 0.042 R. At that point, as noted by Eggers [31], any random fluctuation which 

increases the thread radius will also increase its effective mass, slowing down the motion of 

the fluid; conversely, any fluctuation toward a smaller neck radius will accelerate pinch-off. 

The gap between deterministic hydrodynamics and molecular dynamics is thus bridged in 

this simple example. Other MDPD simulations (not shown here) confirm that a larger 

viscosity or a smaller domain causes the potential-flow scaling to disappear from the 

diagram. 

 

 
 

Figure 13. Variation of minimum thread radius hmin versus time to breakup t0 − t. The 

three lines correspond to potential flow (slope 2/3), inertial-viscous (slope 1), and 

stochastic (slope 0.418) power laws. The open symbols are measured values from the 

MDPD simulation. 

 

1.3.3 MDPD scaling analysis for pinch-off in straining flow 

To simulate pinch-off of drop in a straining flow using MDPD, Non-Periodic Boundary 

Conditions (NPBCs) is implemented at the boundaries of the simulation domain. As time 

progresses, liquid particles exit the domain while more gas particles enter it. The number 

density, mass and viscosity of these two fluids are arranged so that the gas-liquid density 

ratio is 0.0013, and that the kinematic viscosity ratio is 15. These two values are in the range 

of typical air/liquid ratios for air at ambient conditions.  

The straining case presented in subsection 1.1.2 was simulated using MDPD. Several 

snapshots for the simulations at two different strain rates are shown in Fig 14. The time is 
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scaled by DPD unit time. As the strain rate increases, the global-scale elongation of drop 

becomes faster. However, closer look at the local-scale neck region (rectangular box) reveals 

that the local pinch-off process does not depend much on the strain rate. At the same time t-t0 

relative to pinch-off, the thread shapes are quite similar for the two strain rate cases even 

though the larger-scale drop shapes are different.  

The minimum thread radii hmin under the two strain rates are extracted from the simulation 

and plotted as a function of time in Fig. 15. The two cases show certain degree of discrepancy 

due to the molecular-scale fluctuations when pinch-off is approached. However, hmin for both 

cases shows the same transition from inertial scaling to inertial viscous scaling and to 

stochastic scaling. The point of transition seems agree as well for the two cases. The results 

suggest that strain rate does not affect the evolution of thread neck near pinch-off. As pointed 

out by Eggers [29], the thread behavior approaching pinch-off becomes self-similar and 

depends only on intrinsic length and time scales, independent of external conditions such as 

strain rate. The results in Fig. 15 agree with such theoretical arguments. The theoretical 

argument also suggests that the transition point between inertial and viscous scaling is only 

dependent on the fluid properties (such as density, viscosity and surface tension) and 

independent of strain rate. Such condition-independent transition point separates the physics 

occurring in different scales. At a scale above the transition point, strain rate affect larger 

scale two-phase flow (see Fig. 14). At a scale below the transition point, the physics is 

independent of strain rate and only affected by molecular-level fluctuations. It can also be 

inferred that because of the scale separation, the molecular fluctuation does not impact larger 

scale dynamics. 

 

 

Figure 14. Snapshots of dumbbell drop breakup in a straining flow at different strain 

rate: 
-16 s 104.0   (top) and 

-16 s 10 (bottom). 

 

t – t0 -18 0-13 2
t 25.2 43.230.2 45.2

t – t0 -18 0-13 2
t 13.6 31.618.6 33.6

6 11 10  s  

6 10.4 10  s  
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Figure 15. Variation of minimum thread radius hmin versus time to breakup t0 − t. for 

different strain rate: -16 s 104.0  (circle) and 
-16 s 10  (dot). 

  

slope 2/3: inertial scaling

slope 1:Inertial viscous scaling

slope 0.418:stochastic scaling
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1.4 Development and demonstration of continuum-scale closure 

model 

 

 
1.4.1 Closure model development from scaling analysis 

The analysis in subsection 1.3.3 gives rise to a key finding that allows developing a physics-

based closure model for continuum simulations.  

The simulation based on the continuum formulation can resolve the thread neck down to the 

inertial to inertial viscous scaling transition point. Because the process below the transition 

point is independent of external flow conditions, the transition point can be used as a 

universal threshold for certain liquid-gas pair with fixed fluid properties. The threshold is 

physics-based and independent of grid-resolutions. The value of the threshold can be 

obtained using meso-scale analysis such as MDPD simulations and applied in continuum 

simulations as the criterion to stop simulating the process below the transition point and 

introduce a numerically forced breakup. Because of the condition-independent nature of the 

threshold, same threshold for numerical breakup can be applied for any pinch-off processes 

occurring in the simulation domain irrespective of their local strain rate. The scaling 

transition point thus becomes the only parameter of the closure model.  

In next subsection, a generic implementation of such closure model in CLSVOF framework 

will be described.  A converged pinch-off simulation when the closure model is applied will 

be demonstrated. 

 

1.4.2 Generic implementation of the closure model 

Since a physics-based threshold has been determined as the scaling transition point, the 

implementation of the closure model involves developing a generic procedure to identify and 

cut the liquid in thread neck region that falls below the threshold. 

The identification procedure is motivated by the algorithm for liquid filament identification 

proposed by Kim and Moin [4], but with substantial modifications to adapt to the current 

CLSVOF and AMR framework. The algorithm is illustrated in Fig. 16. First, all cells are 

grouped in gas phase (< 0), liquid phase (≥ 0), and liquid-gas interface (≥ 0 and 

directly adjacent to  < 0 ), respectively. Then for each interface cell xi, its unit normal ni is 

calculated as  in . With xi and ni, a traverse line can be constituted that serves as 

the center-line of a three-dimensional cylinder traversing through the liquid phase in direction 

ni with a radius r. Starting from the interface cell xi, all its immediate neighbors in the liquid 

phase are searched. If the location of a neighboring cell falls within the range of the cylinder, 

it is added into a list of cells. The next round search initiates from the immediate neighbors of 

the newly identified cells from the previous round, and is carried out in the way of a multi-

branch tree search [5]. Note that the cells visited in one round of search are tagged such that a 

redundant search during the next round for these cells can be avoided. Eventually the search 

is stopped when none of the neighbors of the cells within the list can be found in liquid phase 

(including liquid-gas interface) and enveloped by the cylinder. Once the search is finished, 

the maximum distance from the initial interface cell xi to another interface cell xe in the list is 
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calculated. This distance represents the local liquid thread thickness in the direction ni. If it 

does not exceed the threshold pinch-off size, this list of cells is marked as valid candidate 

cells, which are labeled in green color in Fig. 16. 

The above cylinder-envelope search procedure is carried out for each interface cell. As a 

result, all the cells meeting the criteria of liquid thread thickness are marked. The next step is 

to collect contiguous cells from the tagged ones into separate cell lists to represent separate 

liquid structures. This is achieved again by performing the multi-branch tree neighbor cell 

search described above. Note that the above algorithm is generic in the sense that any region 

with thickness below the threshold will be identified, irrespective the location and orientation 

of the region. The algorithm does not involve numerical computation of gradients, making it 

less sensitive to numerical perturbations. Also the algorithm can be applied in any 

dimensions.   

After the potential liquid pinch-off structures are identified, they are constrained by an 

additional criterion: A liquid filament is disqualified if it contains any liquid cells that touch 

the boundaries of an AMR box. In other words, the ligament is not allowed to cross an AMR 

box and operations on the ligament are constrained within one local box. As a result, the 

breakup operation may be delayed in case the ligament does cross multiple boxes. This might 

seem arbitrary, but due to the dynamic features of AMR, the current box-crossing liquid 

structure has a good chance to be completely contained by a new box within a few time steps 

as the mesh refinement needs to be performed adaptively at every time step. In addition, it is 

advantageous to consider only the local box operation, such that the complexity of 

exchanging liquid structure information between boxes computed on different processors is 

avoided, thus the communication overhead is saved. 

In the current model, the forced breakup occurs at a very small scale. It is thus reasonable to 

assume that the continuum simulation (CLSVOF algorithm) directly captures the small scale 

pinch-off between the smallest satellite drops. The resultant small amount of residual mass 

due to the forced breakup is considered negligible; albeit the mass should be redistributed 

back to the parent drops in the strict sense of mass conservation. 

 

 
 

Figure 16. A schematic of the liquid thread identification algorithm.  
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1.4.3 Demonstration of simulation convergence using the closure model 

With the closure model embedded in the continuum solver, a three-dimensional drop breakup 

in a straining flow is simulated at different resolutions (controlled via AMR). Although the 

flow is largely two-dimensional axisymmetric, we perform the simulation in the 3D version 

of the solver to test the generality of the closure model implementation. The cost of this 

demonstration is much higher than the test cases presented in subsection 1.1.2. 

The physical length scale of the scaling transition point is on the order of micro meters. To 

have the continuum solver capture such small scales within affordable simulation time, we 

hereby perform the demonstration for the pinch-off of a small dumbbell drop of initial 

unperturbed cylindrical diameter D =8 µm, wavelength λ = 20 µm, and wave magnitude ε = 

2µm. For water-air system, the physical scaling transition point is found to be 1.72 µm based 

on MDPD simulation results. The continuum simulations are performed in a 48 µm×48 

µm×48 µm domain with coarsest resolution being used to be 96×96×96. The coarsest grid 

size is 0.5 µm, far below the threshold. That means the drop dynamics before the threshold is 

reached can be resolved by the simulation. The grid setup for refined cases is summarized 

below. 

 

Case No. Base grid Refinement level Refined grid size 

1 96×96×96 0 0.5 µm 

2 64×64×64 1 0.375 µm 

3 96×96×96 1 0.25 µm 

4 64×64×64 2 0.188 µm 

 

The snapshots of simulations prior to, near and post pinch-off are shown in Fig. 17 with the 

results from different resolutions compared. By enforcing breakup at the same physics-based 

threshold independently from grid resolution, the simulation converges with decreasing Δx. 

The drop shapes match quite closely in the three refined cases with AMR (Δx = 0.375 µm, 

0.25 µm, 0.188 µm). The post pinch-off shapes match each other at the same time instant. To 

quantitatively verify the convergence, the breakup time t0 and the post pinch-off separation 

distance dsp are extracted from the simulations and plotted as a function of grid size in Fig. 

18. It is observed that both t0 and dsp reaches a constant value as the grid size decreases. The 

results clearly demonstrate the convergence of the calculation, which can finally be 

considered as a Direct Numerical Simulation of the flow.  
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Figure 17. Snapshots of drop shape predicted by simulations at different resolutions 

using the physics-based closure model.  

 

 

Figure 18. The grid convergence of pinch-off time (a) and drop separation distance post 

pinch-off.  
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